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The concern of this paper is a recent generalization Ln( f (t1 , t2); x, y) for the
operators of Bleimann, Butzer, and Hahn in two variables which is distinct from a
tensor product. We present the complete asymptotic expansion for the operators Ln

as n tends to infinity. The result is in a form convenient for applications. All coef-
ficients of n&k (k=1, 2, ...) are calculated explicitly in terms of Stirling numbers of
the first and second kind. As a special case we obtain a Voronovskaja-type theorem
for the operators Ln . The result for the one-dimensional case was previously derived
by the author. � 1999 Academic Press

1. INTRODUCTION

In 1980 Bleimann, Butzer, and Hahn [10] introduced a sequence of
positive linear operators L[1]

n defined for any real function f on the interval
[0, �) by

(L[1]
n f )(x)=(1+x)&n :

n

k=0
\n

k+ f \ k
n&k+1+ xk (n # N). (1)

Throughout the paper we briefly denote them by BBH operators.
Bleimann, Butzer, and Hahn proved that, for bounded f # C[0, �),

L[1]
n f � f as n � � pointwise on [0, �), the convergence being uniform

on each compact subset of [0, �). Furthermore, they found a rate of conver-
gence by estimating |L[1]

n ( f (t); x)& f (x)| in terms of the second modulus
of continuity of f, where f is assumed to be bounded and uniformly conti-
nuous on [0, �). For a growth condition on f which ensures pointwise
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convergence of L[1]
n f as n � � see [14, Theorem 2.1]. Several authors

[26, 18, 22, 12, 13, 11, 14�16, 8, 19] studied the operators L[1]
n in the

following (see also [9, pp. 306�310, 318]).
Totik [26, Eq. (2.6), where the factor 2&1 is absent] and, later indepen-

dently, Mercer [22] derived the Voronovskaja-type theorem

lim
n � �

n((L[1]
n f )(x)& f (x))=

x(1+x)2

2
f "(x) (2)

for all f # C2[0, �) with f (x)=O(x)(x � �).
The author [2] extended this result by giving the complete asymptotic

expansion for the BBH operators in the form

(L[1]
n f )(x)t f (x)+ :

�

k=1

ck( f; x)(n+1)&k (n � �) (3)

for every function f on [0, �) satisfying f (x)=O(x)(x � �) and possessing
all derivatives in x. Formula (3) means that

(L[1]
n f )(x)= f (x)+ :

m

k=1

ck( f; x)(n+1)&k+o(n&m) (n � �)

for all m # N. The Voronovskaja-type result (2) is the special case m=1.
We remark that in [1, 3�5] the author gave the analogous results for the

Meyer�Ko� nig and Zeller operators, for the Kantorovich polynomials, and
the Stancu beta operators, respectively.

Recently, Adell, de la Cal and Miguel [7] exhibited a bivariate version
of the BBH operators as follows.

Set 2 :=[(x, y) # R2 | x�0, y�0, xy<1] and define, for (x, y) # 2,
n # N and any real function f on 2

(Ln f )(x, y)#Ln( f (t1 , t2); x, y)

= :
n

k=0

:
n&k

l=0

f \ k
n&k+1

,
l

n&l+1+\
n

k, l+
_\ x

1+x+
k

\ y
1+ y+

l

\ 1&xy
(1+x)(1+ y)+

n&k&l

(n # N) (4)

with the multinomial coefficient ( n
k, l)=n !�(k ! l ! (n&k&l)!). Note, that

this two-dimensional analogue of the BBH operators is distinct from a
tensor product.
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The purpose of this paper is to derive the complete asymptotic expansion
for these operators in the form

(Ln f )(x, y)t f (x, y)+ :
�

k=1

ck( f; x, y)(n+1)&k (n � �) (5)

for every bounded function f on 2 which possesses all derivatives in (x, y).
As special case Eq. (5) contains the Voronovskaja-type formula

lim
n � �

n((Ln f )(x, y)& f (x, y))=
x(1+x)2

2
�2

�x2 f (x, y)

&xy(1+x)(1+ y)
�2

�x �y
f (x, y)

+
y(1+ y)2

2
�2

�y2 f (x, y). (6)

All coefficients ck( f; x, y) (k=1, 2, ...) are calculated explicitly in terms of
Stirling numbers of the first and second kind.

While the proof in [2] is based on the observation that the operators
L[1]

n are intimately related to the Bernstein operators Bn by a rational
transformation we use in this paper a completely other method. Our proofs
are self-contained and do not use any properties of the Bernstein operators.

First we investigate the moments for the operators Ln . Then we present
an extension of a general approximation theorem due to Sikkema [24, 25]
into the bivariate case. Finally, we show that the operators Ln satisfy the
assumptions of this theorem in order to obtain the complete asymptotic
expansion (5).

The paper is organized as follows. In the next section we present the
main results. Section 3 is devoted to auxiliary results and the last section
contains the proofs.

2. THE MAIN RESULT

For r # N and fixed (x, y) # R2, let K [2r](x, y) be the class of all functions
f : R2 � R which are bounded on each bounded subset of R2 with f (t1 , t2)
=O((t2

1+t2
2)r) as (t2

1+t2
2) � � and such that f and all its partial derivatives

of order �2r are continuous in (x, y). Now we are in position to formulate
our main result.
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Theorem 1. Let r # N and (x, y) # 2. Then, for each f # K [2r](x, y), the
bivariate BBH operators possess the asymptotic expansion

(Lnf )(x, y)= f (x, y)+ :
r

k=1

ck( f; x, y)(n+1)&k+o(n&r) (n � �),

(7)

where the coefficients are given by

ck( f; x, y)= :
2k

s=2

(&1)k+s

s !
:

P+Q=s \
s

P, Q+
�s

�xP �yQ f (x, y)

_(1+x)P (1+ y)Q Hk(P, Q)

and Hk is defined as

Hk(P, Q)= :
k

j=0

:
++*� j

:
+

m=0

:
*

l=0

(1+x)m (1+ y)l (1&xy) j&m&l

_ :
P

p=1

:
Q

q=1

(&1) p+q \P
p+\

Q
q + S p&1

p&1+m_ p&1+m
p&1++

_S q&1
q&1+l_q&1+l

q&1+*S p+q&1+++*
p+q&1+ j _ p+q&1+ j

p+q&1+k

+ :
k

m=0

(1+x)m :
P

p=1

(&1) p \P
p+ S p&1

p&1+m_ p&1+m
p&1+k

+ :
k

l=0

(1+ y)l :
Q

q=1

(&1)q \Q
q + S q&1

q&1+l_q&1+l
q&1+k . (8)

Note that the values of Stirling numbers can readily be computed by
simple recurrences or can be found in the literature. Also they are available
with the aid of computer algebra software. Therefore, it is easily possible to
calculate explicit expressions for the coefficients ck( f; x, y).

As an immediate consequence of Theorem 1 we obtain the abovemen-
tioned Voronovskaja-type formula for the bivariate BBH operators.

Corollary 1. For (x, y) # 2 and f # K [2](x, y), we have

lim
n � �

n((Ln f )(x, y)& f (x, y))=
x(1+x)2

2
�2

�x2 f (x, y)

&xy(1+x)(1+ y)
�2

�x �y
f (x, y)

+
y(1+ y)2

2
�2

�y2 f (x, y). (9)
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As a further corollary of Theorem 1 we can deduce the complete
asymptotic expansion for the BBH operators in the univariate case.

Corollary 2. Let f : [0, �) � R be bounded and admitting derivatives
of sufficiently high order at x # [0, �). Then, the univariate BBH operators
possess the complete asymptotic expansion

(L[1]
n f )(x)t f (x)+ :

�

k=1

ak( f; x)(n+1)&k (n � �), (10)

where the coefficients ak( f; x) are given by

ak( f; x)= :
2k

s=2

(&1)k+s

s !
f (s)(x)(1+x)s

_ :
k

m=0

(1+x)m :
s

p=1

(&1) p \ s
p+ S p&1

p&1+m_ p&1+m
p&1+k . (11)

Formula (11) simplifies and corrects a previous result [2, Theorem 1].

3. AUXILIARY RESULTS

First, we note a general property of the operators Ln . A straightforward
computation shows the following lemma which will be of later use.

Lemma 1. Let f : 2 � R and put f1(x, y)# f (x, 0), f2(x, y)#(0, y) for
all (x, y) # 2. Then, we have for each (x, y) # 2

(Ln f1)(x, y)=(Ln f )(x, 0) and (Ln f2)(x, y)=(Ln f )(0, y).

Remark 1. Note that with g(x)= f (x, 0) and h( y)= f (0, y) we have

(Ln f )(x, 0)=(L[1]
n g)(x) and

(Ln f )(0, y)=(L[1]
n h)( y) ((x, y) # 2),

where L[1]
n denotes the one-dimensional BBH operator (1).

In the present section we study the moments of the BBH operators.
Instead of the monomials x pyq we consider the functions

gp, q(x, y)=(1+x) p (1+ y)q ( p, q=0, 1, 2, ...) (12)

which are more suitable for the operators Ln . The first step is to express
Ln gp, q as a certain double integral.
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Proposition 1. For each (x, y) # 2, we have in the case p, q # N

(Ln gp, q)(x, y)

=(&1) p+q (n+1) p+q

( p&1)! (q&1)!
(1+x)(1+ y)

(1&xy)2

_|
log(1+x)�(x(1+ y))

0
|

log(1+ y)�( y(1+x))

0
logp&1 (1+x) e&v1&x(1+ y)

1&xy

_logq&1 (1+ y) e&v2& y(1+x)
1&xy \e&v1&v2&xy

1&xy +
n

_e&v1&v2 dv2 dv1 , (13)

and in the case p # N, q=0

(Ln gp, 0)(x, y)=(&1) p&1 (n+1) p

( p&1)!
(1+x)

_|
log(1+x)�x

0
logp&1 [(1+x) e&v&x] e&(n+1) v dv. (14)

The correspondent expression for the case p=0, q # N is completely
symmetric to Formula (14).

Remark 2. Note that, for (x, y) # 2, we have

1+x
x(1+ y)

=1+
1&xy

x(1+ y)
>1 and

1+ y
y(1+x)

=1+
1&xy

y(1+x)
>1.

Therefore, the integration domain in (13) is a proper rectangle in the first
quadrant depending only on (x, y).

Remark 3. Since, for a, b�0, not both equal to zero, we have

|
�

a
|

�

b
t p&1

1 tq&1
2 e&t1&t2 { 1&xy

(1+x)(1+ y) _e&t1+
x(1+ y)
1&xy &_e&t2+

y(1+x)
1&xy &

&
xy

(1&xy)=
n

dt2 dt1=O(rn) (n � �)

with some positive constant r<1, depending on x, y, a, b, the proof of
Proposition 1 shows that the integration domain in (13) may be replaced
by any smaller rectangle [0, R1]_[0, R2] with 0<R1<log(1+x)�
(x(1+ y)) and 0<R2<log(1+ y)�( y(1+x)) producing an error of
magnitude O(e&#n) with #>0 as n � �.
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The next proposition represents Ln gp, q in terms of a Laplace integral.

Proposition 2. For (x, y) # 2 and p, q # N, there are positive numbers
#, $ independent on n such that

(Ln gp, q)(x, y)=(n+1) p+q |
$

0
e&(n+1) wF(w) dw+O(e&#n) (n � �),

(15)

where F is defined as

F(w)=(&1) p+q+1 :
�

m= p&1

:
�

l=q&1

S p&1
m S q&1

l

(1+x)m+1 (1+ y)l+1

(1&xy)m+l+1

_ :
�

+=m

:
�

*=l

1
(++*+1)!

log++*+1 [(1&xy) e&w+xy]. (16)

The quantities S m
k and _m

k denote the Stirling numbers of the first, resp.
second, kind. Recall that the Stirling numbers are defined by

xn
� = :

n

k=0

S k
n xk and xn= :

n

k=0

_k
n xk

� (n # N0),

where xn
� =x(x&1) } } } (x&n+1), x0

� =1 is the falling factorial.
For the proof of Proposition 2 we need the following preliminary lemma.

Lemma 2. For m=0, 1, 2, ..., we have the power series expansions

logm(1+x)=m ! :
�

k=m

S m
k

xk

k !
( |x|<1)

and

(ex&1)m=m ! :
�

k=m

_m
k

xk

k !
(x # R).

For a proof see, e.g., [17, Eq. (4), p. 146 and Eq. (5), p. 202].
Moreover, we note the ``orthogonality''-relation for the Stirling-numbers

(see, e.g., [17, p. 182, Eq. (1)], resp. [17, p. 183, Eq. (2)]) which will be of
later use.

Lemma 3. For m, n=0, 1, 2, ..., with m�n we have

:
n

k=m

_m
k } S k

n= :
n

k=m

S m
k } _k

n={1,
0,

if m=n,
otherwise.
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The next proposition gives the asymptotic expansion for Ln gp, q as n
tends to infinity.

Proposition 3. For each (x, y) # 2, the complete asymptotic expansion
for Ln gp, q as n � � is

(1) in the case p, q # N

(Ln gp, q)(x, y)

t(1+x) p (1+ y)q+ :
�

k=1

(&1)k

(n+1)k

_ :
k

j=0

:
++*� j

:
+

m=0

:
*

l=0

(1+x)m+ p (1+ y)l+q (1&xy) j&m&l

_S p&1
p&1+m_ p&1+m

p&1++ S q&1
q&1+l_q&1+l

q&1+*S p+q&1+++*
p+q&1+ j _ p+q&1+ j

p+q&1+k , (17)

(2) in the case p # N, q=0

(Ln gp, 0)(x, y)t(1+x) p+ :
�

k=1

(&1)k

(n+1)k :
k

m=0

S p&1
p&1+m_ p&1+m

p&1+k (1+x)m+ p.

The third case p=0, q # N runs completely symmetric to the second case.

Now we apply the following general approximation theorem [6,
Theorem A] giving the complete asymptotic expansion for a sequence of
positive linear operators in terms of their central moments.

Theorem A. Let r # N and let G/R2. For (x, y) # G, let Vn : K [2r](x, y)
� C(G) (n=1, 2, ...) be a sequence of positive linear operators. Assume that
the operators Vn are applicable to all polynomials of degree �2r+2 and that

Vn(((t1&x)2+(t2&y)2)s; x, y)=O(n&s) (n � �) (18)

for s=r and s=r+1. Then, we have, for each f # K[2r](x, y),

(Vn f )(x, y)= :
2r

s=0

1
s !

:
i+ j=s \

s
i, j+

�s

�xi �y j f (x, y)

_Vn((t1&x) i (t2& y) j; x, y)+o(n&r) (n � �). (19)

In order to obtain the complete asymptotic expansion (5) for the BBH
operators we have to show that the operators Ln satisfy the assumptions of
Theorem A with G=2.
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It remains to check condition (18), that is, we have to show that

Ln((t1&x)2p (t2& y)2q; x, y)=O(n&s) (n � �)

for all p, q�0 with p+q=s (s=0, 1, 2, ...). In the following proposition we
shall prove a slightly sharper result.

Proposition 4. For each (x, y) # 2 and P, Q=0, 1, 2, ..., we have

Ln((t1&x)P (t2& y)Q; x, y)=O(n&w(P+Q+1)�2x) (n � �). (20)

For the proof of Proposition 4 we shall need some further properties of
the Stirling numbers [17, p. 151, Eq. (5)], resp. [17, p. 171, Eq. (7)].

Lemma 4. For k with 1�k�n the Stirling numbers of the first, resp.
second, kind possess the representation

S n&k
n =Ck, 0 \ n

2k++ } } } +Ck, k&1 \ n
k+1+

and

_n&k
n =C� k, 0 \ n

2k++ } } } +C� k, k&1 \ n
k+1+ .

The coefficients Ck, l and C� k, l are independent on n and satisfy certain
partial difference equations whose general solutions are unknown [17,
p. 150]. Some closed expressions for Ck, l and C� k, l can be found in [3]
or [23].

Moreover, we mention the well-known expression

_k
n=

(&1)k

k !
:
k

i=0

(&1) i \k
i + in

which implies, for all k # N,

:
k

i=0

(&1) i \k
i + in=(&1)k k ! _k

n=0 (n=0, ..., k&1) (21)

with the convention 00=1.
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4. THE PROOFS

Proof of Proposition 1. We have, for (x, y) # 2,

(Ln gp, q)(x, y)= :
k+l�n

(n+1) p+q

(n&k+1) p (n&l+1)q \ n
k, l+

_\ x
1+x+

k

\ y
1+ y+

l

\ 1&xy
(1+x)(1+ y)+

n&k&l

.

Taking advantage of the identity

z&p=
1

( p&1)! |
�

0
t p&1e&tz dt

for all z>0 and p # N we obtain for p, q # N

(Ln gp, q)(x, y)

=
(n+1) p+q

( p&1)! (q&1)! |
�

0
|

�

0
t p&1

1 tq&1
2 e&(n+1)(t1+t2)

_ :
k+l�n \

n
k, l+\

xet1

1+x+
k

\ yet2

1+ y+
l

\ 1&xy
(1+x)(1+ y)+

n&k&l

dt2 dt1

(22)

Application of the binomial theorem yields

e&n(t1+t2) :
k+l�n \

n
k, l+\

xet1

1+x+
k

\ yet2

1+ y+
l

\ 1&xy
(1+x)(1+ y)+

n&k&l

={ 1&xy
(1+x)(1+ y) _e&t1+

x(1+ y)
1&xy &_e&t2+

y(1+x)
1&xy &&

xy
(1&xy)=

n

.

Inserting this in (22) gives

(Ln gp, q)(x, y)=
(n+1) p+q

( p&1)! (q&1)! |
�

0
|

�

0
t p&1

1 tq&1
2 e&t1&t2 { 1&xy

(1+x)(1+ y)

__e&t1+
x(1+ y)
1&xy &_e&t2+

y(1+x)
1&xy &&

xy
(1&xy)=

n

dt2 dt1 .

190 ULRICH ABEL



If we change the variables according to

t1=&log
(1+x) e&v1&x(1+ y)

1&xy
and

t2=&log
(1+ y) e&v2& y(1+x)

1&xy
,

we get (13).
Observing that for p, q # N there holds gp, 0(x, y)=limy � 0 gp, q(x, y) and

g0, q(x, y)=limx � 0 gp, q(x, y) the remaining cases follow, by Lemma 1.
This completes the proof of Proposition 1.

Proof of Proposition 2. According to Remark 2 the integration domain
in (13) is a rectangle in the first quadrant depending only on (x, y). A
rotation of the rectangle by ?�4 around the origin, i.e., the change of
variable

\v1

v2+=
1
2 \

1
&1

1
1+\

w1

w2+
gives, with regard to Remark 3,

(Ln gp, q)(x, y)

=(&1) p+q (n+1) p+q

( p&1)! (q&1)!
(1+x)(1+ y)

(1&xy)2

_|
=

0
|

w2

&w2

logp&1 (1+x) e&(w1+w2)�2&x(1+ y)
1&xy

_logq&1 (1+ y) e&(&w1+w2)�2& y(1+x)
1&xy \e&w2&xy

1&xy +
n

e&w2
1
2

dw1 dw2

+O(e&#n) (n � �) (23)

for arbitrary small =>0 with a constant #>0 depending only on (x, y)
and =.

A further change of variable replacing w1 by 2w1 w2&w2 in the inner
integral leads to

191BIVARIATE BBH OPERATORS



(Ln gp, q)(x, y)=(&1) p+q (n+1) p+q

( p&1)! (q&1)!
(1+x)(1+ y)

(1&xy)2

_|
=

0
|

1

0
logp&1 (1+x) e&w1w2&x(1+ y)

1&xy

_logq&1 (1+ y) e&w2(1&w1)& y(1+x)
1&xy

dw1

_\e&w2&xy
1&xy +

n

w2 e&w2 dw2+O(e&#n) (n � �).

(24)

Without loss of generality we can assume that = in (24) is so small that

} 1+x
1&xy

(e&w1w2&1) }<1

and

} 1+ y
1&xy

(e&w2(1&w1)&1) }<1

for all w1 # [0, 1] and w2 # [0, =]. Then, we have, by Lemma 2,

logp&1 (1+x) e&w1w2&x(1+ y)
1&xy

=logp&1 \1+
1+x
1&xy

(e&w1w2&1)+
=( p&1)! :

�

m= p&1

S p&1
m \ 1+x

1&xy+
m

:
�

+=m

1
+ !

_m
+ (&w1w2)+.

Inserting this and the analogous expansions for the logq&1-term in Eq. (24)
we obtain

(Ln gp, q)(x, y)=(&1) p+q (n+1) p+q (1+x)(1+ y)
(1&xy)2

_ :
�

m= p&1

:
�

l=q&1

S p&1
m S q&1

l \ 1+x
1&xy+

m

\ 1+ y
1&xy+

l

_ :
�

+=m

:
�

*=l

(&1)++*

+ ! *!
_m

+ _l
*
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_|
=

0
|

1

0
w+

1(1&w1)* dw1 \e&w2&xy
1&xy +

n

w++*+1
2 e&w2 dw2

+O(e&#n) (n � �).

A last change of variable w2=&log[(1&xy) e&w+xy], and noting that
the inner integral is the Beta-function B(++1, *+1)=+ ! * !�((++*+1)!)
yields, finally,

(Ln gp, q)(x, y)=(&1) p+q+1 (n+1) p+q :
�

m= p&1

:
�

l=q&1

S p&1
m S q&1

l

_
(1+x)m+1 (1+ y)l+1

(1&xy)m+l+1 :
�

+=m

:
�

*=l

1
(++*+1)!

_m
+ _l

*

_|
$

0
e&(n+1) w log++*+1 [(1&xy) e&w+xy] dw

+O(e&#n) (n � �)

with $=&log((e&=&xy)�(1&xy)). Note that $>0 if = is sufficiently small.
This completes the proof of Proposition 2.

Proof of Proposition 3. We start with the case p, q # N. By Proposi-
tion 2, (Ln gp, q)(x, y) is, essentially, the Laplace transform of the truncated
function

F� (w)={F(w)
0

( |w|�$),
( |w|>$),

with F as defined in (16). In order to derive an asymptotic expansion for
(Ln gp, q)(x, y) we study the behaviour of the Laplace integral in (15).
Obviously, F is analytic in a neighborhood of the origin w=0. We proceed
in deriving the power series expansion of F.

Application of Lemma 2 yields

log++*+1 [(1&xy) e&w+xy]

=log++*+1 [1+(1&xy)(e&w&1)]

=(++*+1)! :
�

\=++*+1

(&w)\

\ !
:
\

{=++*+1

S ++*+1
{ _{

\(1&xy){
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in |w|<$. Therefore, by (16), we have

F(w)=(&1) p+q+1 :
�

+= p&1

:
�

*=q&1

:
+

m= p&1

:
*

l=q&1

S p&1
m S q&1

l _m
+ _l

*

_
(1+x)m+1 (1+ y)l+1

(1&xy)m+l+1 :
�

\=++*+1

(&w)\

\ !

_ :
\

{=++*+1

S ++*+1
{ _{

\(1&xy){

= :
�

k=0

(&1)k wk+ p+q&1

(k+ p+q&1)!
:

\+++*=k

:
+

m=0

:
*

l=0

S p&1
m+ p&1

_S q&1
l+q&1 _m+ p&1

++ p&1 _l+q&1
*+q&1

_
(1+x)m+ p (1+ y)l+q

(1&xy)m+l
:
\

{=0

S ++*+ p+q&1
{+++*+ p+q&1

__{+++*+ p+q&1
k+ p+q&1 (1&xy){+++* .

Thus, we can apply Watson's lemma (see, e.g., [20, p. 106f] or [1,
Lemma 1]) which states that

|
$

0
e&swF(w) dwt :

�

k=0

k ! aks&k&1 (s � �),

provided F(w)=��
k=0 ak wk. We remark that this is valid even if s is

complex as R(s) � +�.
By Proposition 2, we obtain

(Ln gp, q)(x, y)t :
�

k=0

(&1)k

(n+1)k :
\+++*=k

:
+

m=0

:
*

l=0

S p&1
m+ p&1

_S q&1
l+q&1_m+ p&1

++ p&1 _l+q&1
*+q&1

(1+x)m+ p (1+ y)l+q

(1&xy)m+l

_ :
\

{=0

S ++*+ p+q&1
{+++*+ p+q&1 _{+++*+ p+q&1

k+ p+q&1 (1&xy){+++*

as n � � which yields Eq. (17).
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The cases (2) and (3) can be deduced directly from Proposition 1. We
obtain them, in an alternative way, from the first case. By Lemma 1, we put
y=0 in Eq. (17) with arbitrary q # N in order to obtain

(Ln gp, 0)(x, y)

=(Ln gp, q)(x, 0)

t(1+x) p+ :
�

k=1

(&1)k

(n+1)k :
k

j=0

:
++*� j

:
+

m=0

(1+x)m+ p

_S p&1
p&1+m_ p&1+m

p&1++ S p+q&1+++*
p+q&1+ j _ p+q&1+ j

p+q&1+k :
*

l=0

S q&1
q&1+l_q&1+l

q&1+*

=(1+x) p+ :
�

k=1

(&1)k

(n+1)k :
k

m=0

(1+x)m+ p S p&1
p&1+m _ p&1+m

p&1+k ,

where we used Lemma 3 twice. Likewise, case (3) follows from Eq. (17).

Proof of Proposition 4. The case P+Q=0 is obvious. Now let P+Q>0.
Application of the binomial theorem yields

Ln((t1&x)P (t2& y)Q; x, y)

= :
P

p=0

:
Q

q=0

(&1)P+Q& p&q \P
p+\

Q
q + (1+x)P& p (1+ y)Q&q (Ln gp, q)(x, y).

We split the sum and obtain, by Proposition 3,

(&1)P+Q Ln((t1&x)P (t2& y)Q; x, y)t :
�

k=1

(&1)k

(n+1)k (71+72+73), (25)

say, with

71= :
k

j=0

:
++*� j

:
+

m=0

:
*

l=0

(1+x)P+m (1+ y)Q+l (1&xy) j&m&l

_ :
P

p=1

:
Q

q=1

(&1) p+q

_\P
p+\

Q
q + S p&1

p&1+mS q&1
q&1+l_ p&1+m

p&1++ _q&1+l
q&1+*S p+q&1+++*

p+q&1+ j _ p+q&1+ j
p+q&1+k ,

72=(1+ y)Q :
k

m=0

(1+x)P+m :
P

p=1

(&1) p \P
p+ S p&1

p&1+m_ p&1+m
p&1+k ,

73=(1+x)P :
k

l=0

(1+ y)Q+l :
Q

q=1

(&1)q \Q
q + S q&1

q&1+l_q&1+l
q&1+k , (26)
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where the sums are to be read as 0 if P=0 or Q=0, respectively. We shall
prove that 71+72+73=0 if 2k<P+Q.

Let us first consider 71 . For fixed k, j, +, *, m, l, the term

S p&1
p&1+mS q&1

q&1+l_ p&1+m
p&1++ _q&1+l

q&1+*S p+q&1+++*
p+q&1+ j _ p+q&1+ j

p+q&1+k

occurring in 71 is, by Lemma 4, a polynomial in p and q of order �2k
which we shall denote by T( p, q)=T(k, j, +, *, m, l; p, q).

Assume 2k<P+Q. Then, we have, by Eq. (21),

:
P

p=1

:
Q

q=1

(&1) p+q \P
p+\

Q
q + T( p, q)

=& :
P

p=1

(&1) p \P
p+ T( p, 0)& :

Q

q=1

(&1)q \Q
q + T(0, q)&T(0, 0). (27)

By Lemma 4, S p&1
p&1+m is a polynomial in p which vanishes for p=0 if

m>0 and takes the value 1 for p=0 if m=0. Likewise _ p&1+m
p&1++ is a poly-

nomial in p which vanishes for p=0 if m=0, +>0 and takes the value 1
for p=0 if m=+=0.

With the same argument S q&1
q&1+l _q&1+l

q&1+* is a polynomial in q which
vanishes for q=0 if l>0 or l=0, *>0 and takes the value 1 for q=0 if
l=*=0.

Therefore,

:
P

p=1

(&1) p \P
p+ T( p, 0)=0

unless l=*=0 in which case we have

:
k

j=0

:
++*� j

:
+

m=0

:
*

l=0

(1+x)P+m (1+ y)Q+l (1&xy) j&m&l

_ :
P

p=1

(&1) p \P
p+ T(k, j, +, *, m, l; p, 0)

=(1+ y)Q :
k

j=0

(1+x)P+ j :
P

p=1

(&1) p \P
p+ S p&1

p&1+ j_
p&1+ j
p&1+k=72 ,

(28)

where we used Lemma 3. In a completely analogous fashion one shows

:
k

j=0

:
++*� j

:
+

m=0

:
*

l=0

(1+x)P+m (1+ y)Q+l (1&xy) j&m&l

_ :
Q

q=1

(&1)q \Q
q+ T(k, j, +, *, m, l; 0, q)=73 . (29)
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Furthermore, T(0, 0)=0 if not m=+=l=*=0. In this case T reduces to
S p+q&1

p+q&1+ j_
p+q&1+ j
p+q&1+k which is a polynomial in p, q vanishing for p=q=0

if j>0 or if j=0 and k>0. Therefore, we have

:
k

j=0

:
++*� j

:
+

m=0

:
*

l=0

(1+x)P+m (1+ y)Q+l (1&xy) j&m&l

_T(k, j, +, *, m, l; 0, 0)=0 (30)

for k>0. Combining Eqs. (28), (29), and (30) with (27) we obtain 71=
&72&73 in Eq. (25).

This completes the proof of Proposition 4.

Proof of Theorem 1. Theorem 1 follows from Proposition 3, Theorem A,
Proposition 4, Eqs. (25), (26) and the observation that, for each linear
function f,

(Ln f )(x, y)= f (x, y)+O(e&qn) (n � �)

with some q>0.

Proof of Corollary 2. By Remark 1, Corollary 2 is an immediate conse-
quence of Theorem 1.

ACKNOWLEDGMENT

The author is indebted to the referees for some valuable comments. Their suggestions led
to a condensed manuscript and an improved presentation of the results.

REFERENCES

1. U. Abel, The moments for the Meyer�Ko� nig and Zeller operators, J. Approx. Theory 82
(1995), 352�361.

2. U. Abel, On the asymptotic approximation with operators of Bleimann, Butzer and Hahn,
Indag. Math. (N.S.) 7 (1996), 1�9.

3. U. Abel, The complete asymptotic expansion for the Meyer�Ko� nig and Zeller operators,
J. Math. Anal. Appl. 208 (1997), 109�119.

4. U. Abel, Asymptotic approximation with Kantorovich polynomials, Approx. Theory
Appl., in press.

5. U. Abel, Asymptotic approximation with Stancu beta operators, to appear.
6. U. Abel, The asymptotic expansion for the bivariate Meyer�Ko� nig and Zeller operators,

submitted for publication.
7. J. A. Adell, J. de la Cal, and M. S. Miguel, On the property of monotonic convergence

for multivariate Bernstein-type operators, J. Approx. Theory 80 (1995), 132�137.
8. J. A. Adell and J. de la Cal, Preservation of moduli of continuity for Bernstein-type

operators, in ``Approx., Probability and Related Fields'' (G. Anastassiou and S. T. Rachev,
Eds.), pp. 1�18, Plenum, New York, 1994.

197BIVARIATE BBH OPERATORS



9. F. Altomare and M. Campiti, ``Korovkin-Type Approximation Theory and Its Applica-
tions,'' de Gruyter, Berlin�New York, 1994.

10. G. Bleimann, P. L. Butzer, and L. Hahn, A Bernstein-type operator approximating
continuous functions on the semi-axis, Indag. Math. 42 (1980), 255�262.

11. J. de la Cal and F. Luquin, A note on limiting properties of some Bernstein-type
operators, J. Approx. Theory 68 (1992), 322�329.

12. B. Della Vecchia, Some properties of a rational operator of Bernstein-type, Progr. Approx.
Theory (1991), 177�185.

13. T. Hermann, On the operator of Bleimann, Butzer and Hahn, Colloq. Math. Soc. Ja� nos
Bolyai 58 (1991), 355�360.

14. C. Jayasri and Y. Sitaraman, On a Bernstein-type operator of Bleimann, Butzer and
Hahn, J. Comput. Appl. Math. 47 (1993), 267�272.

15. C. Jayasri and Y. Sitaraman, On a Bernstein-type operator of Bleimann, Butzer and
Hahn, II, J. Anal. 1 (1993), 125�137.

16. C. Jayasri and Y. Sitaraman, On a Bernstein-type operator of Bleimann, Butzer and
Hahn, III, in ``Approx., Probability and Related Fields'' (G. Anastassiou and S. T.
Rachev, Eds.), pp. 297�301, Plenum, New York, 1994.

17. C. Jordan, ``Calculus of Finite Differences,'' Chelsea, New York, 1965.
18. R. A. Khan, A note on a Bernstein-type operator of Bleimann, Butzer and Hahn,

J. Approx. Theory 53 (1988), 295�303.
19. R. A. Khan, Reverse martingales and approximation operators, J. Approx. Theory 80

(1995), 367�377.
20. A. Kratzer and W. Franz, ``Transzendente Funktionen,'' Akademische Verlagsgesellschaft,

Leipzig, 1963.
21. G. G. Lorentz, ``Bernstein Polynomials,'' Univ. of Toronto Press, Toronto, 1953.
22. A. McD. Mercer, A Bernstein-type operator approximating continuous functions on the

half-line, Bull. Calcutta Math. Soc. 31 (1989), 133�137.
23. B. Reif, ``Asymptotische Approximation durch die Operatoren von Meyer�Ko� nig und

Zeller,'' Diplomarbeit, Fachhochschule Giessen-Friedberg, 1994.
24. P. C. Sikkema, On some linear positive operators, Indag. Math. 32 (1970), 327�337.
25. P. C. Sikkema, On the asymptotic approximation with operators of Meyer�Ko� nig and

Zeller, Indag. Math. 32 (1970), 428�440.
26. V. Totik, Uniform approximation by Bernstein-type operators, Indag. Math. 46 (1984),

87�93.

198 ULRICH ABEL


	1. INTRODUCTION 
	2. THE MAIN RESULT 
	3. AUXILIARY RESULTS 
	4. THE PROOFS 
	ACKNOWLEDGMENT 
	REFERENCES 

